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DIFFERENCE FILTER PRECONDITIONING FOR LARGE
COVARIANCE MATRICES
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Abstract. In many statistical applications one must solve linear systems involving large, dense,
and possibly irregularly structured covariance matrices. These matrices are often ill-conditioned;
for example, the condition number increases at least linearly with respect to the size of the matrix
when observations of a random process are obtained from a fixed domain. This paper discusses a
preconditioning technique based on a differencing approach such that the preconditioned covariance
matrix has a bounded condition number independent of the size of the matrix for some important
process classes. When used in large scale simulations of random processes, significant improvement
is observed for solving these linear systems with an iterative method.
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1. Introduction. A problem that arises in many statistical applications is the
solution of linear systems of equations for large positive definite covariance matrices
(see, e.g., [20]). An underlying challenge for solving such linear systems is that covari-
ance matrices are often dense and ill-conditioned. Specifically, if one considers taking
an increasing number of observations of some random process in a fixed and bounded
domain, then one often finds the condition number grows without bound at some
polynomial rate in the number of observations. This asymptotic approach in which
an increasing number of observations is taken in a fixed region is called fixed-domain
asymptotics. It is used extensively in spatial statistics [20] and is being increasingly
used in time series, especially in finance, where high frequency data is now ubiqui-
tous [3]. Preconditioned iterative methods are usually the practical choice to solve for
these covariance matrices, whereby the matrix-vector multiplications and the choice
of a preconditioner are two crucial factors that affect the computational efficiency.
Whereas the former problem has been extensively explored, for example, by using
the fast multipole method [12, 4, 8], the latter has not acquired satisfactory answers
yet. Some designs of the preconditioners, which are relevant to this work given the
close connection between linear systems arising from radial basis function (RBF) in-
terpolation and the covariance matrix, have been proposed and analyzed empirically
(see, e.g., [5, 9, 13]); however, their behavior was rarely theoretically studied. Fur-
thermore, the preconditioners used therein are tuned towards specific iterative solvers
(e.g., GMRES as in [5], an iterative technique that is analogous to Conjugate Gradient
as in [9, 13]), and they are not symmetric and might lose positive definiteness when
the interpolation constraints are removed. Therefore, further analysis and adaptation
in design is needed before they can be applied to a covariance matrix in an iterative
solver that exploits the symmetric definiteness of a matrix.
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This paper proves that for processes whose spectral densities decay at certain spe-
cific rates at high frequencies, the preconditioned covariance matrices have a bounded
condition number. The preconditioners use filters based on simple differencing opera-
tions, which have long been used to “prewhiten” (make the covariance matrix closer to
a multiple of the identity) regularly observed time series. However, the utility of such
filters for irregularly observed time series and spatial data is not as well recognized.
These cases are the focus of this work.

Consider a stationary real-valued random process Z(x) with covariance function
k(x) and spectral density f(ω), which are mutually related by the Fourier transform
and the inverse transform:

k(x) =

∫ +∞

−∞
f(ω) exp(iωx) dω, f(ω) =

1

2π

∫ +∞

−∞
k(x) exp(−iωx) dx.

In higher dimensions, the process is more often called a random field. Where boldface
letters denote vectors, a random field Z(x) in Rd has the following covariance function
k(x) with spectral density f(ω):

k(x) =

∫
Rd

f(ω) exp(iωTx) dω, f(ω) =
1

(2π)d

∫
Rd

k(x) exp(−iωTx) dx.

For real-valued processes, both k and f are even functions. This paper describes
results for irregularly sited observations in one dimension and for gridded observations
in higher dimensions. To facilitate the presentation, we will in general use the notation
for d dimensions, except when discussions or results are specific to one dimension. The
covariance matrix K for observations {Z(xj)} at locations {xj} is defined as

K(j, l) ≡ cov{Z(xj), Z(xl)} = k(xj − xl).

Taking f to be nonnegative and integrable guarantees that k is a valid covariance
function. Indeed, for any real vector a,

aTKa =
∑
j,l

ajalk(xj − xl) =

∫
Rd

f(ω)

∣∣∣∣∣∑
j

aj exp(iω
Txj)

∣∣∣∣∣
2

dω, (1.1)

which is obviously nonnegative as it must be since it equals var
{∑

j ajZ(xj)
}
. The

existence of a spectral density implies that k is continuous.
In some statistical applications, a family of parameterized covariance functions

is chosen, and the task is to estimate the parameters and to uncover the underlying
covariance function that presumably generates the given observed data. Let θ be the
vector of parameters. We expand the notation and denote the covariance function
by k(x;θ). Similarly, we use K(θ) to denote the covariance matrix parameterized by
θ. We assume that observations yj = Z(xj) come from a stationary random field
that is Gaussian with zero mean.1 The maximum likelihood estimation [17] method
estimates the parameter θ by finding the maximizer of the log-likelihood function

L(θ) = −1

2
yTK(θ)−1y − 1

2
log(det(K(θ)))− m

2
log 2π,

1The case of nonzero mean that is linear in a vector of unknown parameters can be handled with
little additional effort by using maximum likelihood or restricted maximum likelihood [20].
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where the vector y contains the m observations {yj}. A maximizer θ̂ is called a
maximum likelihood estimate of θ. The optimization can be performed by solving
(assuming there is a unique solution) the score equation

−yTK(θ)−1 ∂K(θ)

∂θ`
K(θ)−1y + tr

(
K(θ)−1 ∂K(θ)

∂θ`

)
= 0, ∀ `, (1.2)

where the left-hand side is nothing but the partial derivative of −2L(θ). Because of
the difficulty of evaluating the trace for a large implicitly defined matrix, Anitescu et
al. [1] exploited the Hutchinson estimator2 of the matrix trace and proposed solving
the sample average approximation of the score equation instead:

F`(θ) := −yTK(θ)−1 ∂K(θ)

∂θ`
K(θ)−1y

+
1

N

N∑
j=1

uT
j

(
K(θ)−1 ∂K(θ)

∂θ`

)
uj = 0, ∀ `, (1.3)

where the sample vectors uj ’s have independent Rademacher variables as entries. As

the number N of sample vectors tends to infinity, the solution θ̂N of (1.3) converges

to θ̂ in distribution:

(V N/N)−1/2(θ̂N − θ̂)
D→ standard normal, (1.4)

where V N is some positive definite matrix dependent on the Jacobian and the variance
of F (θ). This error needs to be distinguished from the error in θ̂ itself as an estimate
of θ. Roughly speaking, this convergence result indicates that the `th estimated
parameter θ̂N` has variance of approximately V N (`, `)/N when N is sufficiently large.
Practical approaches (such as a Newton-type method) for solving (1.3) will need to
evaluate F (possibly multiple times), which in turn requires solving a linear system
involving K with multiple right-hand sides (y and uj ’s).

If we do not precondition, the condition number of K grows faster than linearly
in m assuming the observation domain has finite diameter and k is continuous, which
holds for any integrable spectral density f . To prove this, first note that we can
pick observation locations ym and zm among x1, . . .xm such that |ym − zm| → 0 as

m → ∞ and k continuous implies var
{

1√
2
Z(ym) − 1√

2
Z(zm)

}
→ 0 as m → ∞, so

that the minimum eigenvalue of K also tends to 0 as m → ∞. To get a lower bound
on the maximum eigenvalue, we note that there exists r > 0 such that k(x) > 1

2k(0)
for all |x| ≤ r. Assume that the observation domain has a finite diameter, so that
it can be covered by a finite number of balls of diameter r and call this number B.
Then for any m, one of these balls must contain at least m′ ≥ m/B observations. The
sum of these observations divided by

√
m′ has variance at least 1

2m
′k(0) ≥ m

2Bk(0),
so the maximum eigenvalue of K grows at least linearly with m. Thus, the ratio of
the maximum to the minimum eigenvalue of K and hence its condition number grows
faster than linearly in m. How much faster clearly depends on the smoothness of Z,
but we will not pursue this topic further here.

2One can also use other stochastic estimators to approximate the matrix trace, which result in
different convergence rates; see [2] for an exposition of the estimators. We note that the Hutchinson

estimator with N ≈ 100 yielded a satisfactory approximation to the maximum likelihood estimate θ̂
in a problem with m large [1].
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In what follows, we consider a filtering technique that essentially preconditions
K such that the new system has a condition number that does not grow with the size
of K for some distinguished process classes. Strictly speaking, the filtering operation,
though linear, is not equal to a preconditioner in the standard sense, since it reduces
the size of the matrix by a small number. Thus, we also consider augmenting the
filter to obtain a full-rank linear transformation that serves as a real preconditioner.
However, as long as the rank of the filtering matrix is close to m, maximum likelihood
of θ based on the filtered observations should generally be nearly as statistically
effective as maximum likelihood based on the full data. In particular, maximum
likelihood estimates are invariant under full rank transformations of the data.

The theoretical results on bounded condition numbers heavily rely on the prop-
erties of the spectral density f . For example, the results in one dimension require
either that the process behaves not too differently than does Brownian motion or in-
tegrated Brownian motion, at least at high frequencies. Although the restrictions on
f are strong, they do include some models frequently used for continuous time series
and in spatial statistics. As noted earlier, the theory is developed based on fixed-
domain asymptotics; and, without loss of generality, we assume that this domain is
the box [0, T ]d. As the observations become denser, for continuous k the correlations
of neighboring observations tend to 1, resulting in matrices K that are nearly singu-
lar. However, the proposed difference filters can precondition K so that the resulting
matrix has a bounded condition number independent of the number of observations.
Section 4 gives several numerical examples demonstrating the effectiveness of this
preconditioning approach.

2. Filter for one-dimensional case. Let the process Z(x) be observed at
locations

0 ≤ x0 < x1 < · · · < xn ≤ T,

and suppose the spectral density f satisfies

f(ω)ω2 bounded away from 0 and ∞ as ω → ∞. (2.1)

The spectral density of Brownian motion is proportional to ω−2, so (2.1) says that
Z is not too different from Brownian motion in terms of its high frequency behavior.
Define the process filtered by differencing and scaling as

Y
(1)
j = [Z(xj)− Z(xj−1)]/

√
dj , j = 1, . . . , n, (2.2)

where dj = xj − xj−1. Let K
(1) denote the covariance matrix of the Y

(1)
j ’s:

K(1)(j, l) = cov
{
Y

(1)
j , Y

(1)
l

}
.

For Z Brownian motion, K(1) is a multiple of the identity matrix, and (2.1) is sufficient
to show the condition number of K(1) is bounded by a finite value independent of the
number of observations.

Theorem 2.1. Suppose Z is a stationary process on R with spectral density f
satisfying (2.1). There exists a constant C depending only on T and f that bounds
the condition number of K(1) for all n.

If we let L(1) be a bidiagonal matrix with nonzero entries

L(1)(j, j − 1) = −1/
√

dj and L(1)(j, j) = 1/
√
dj ,
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it is not hard to see that K and K(1) are related by

K(1) = L(1)KL(1)T .

Note that L(1) is rectangular, since the row index ranges from 1 to n and the column
index ranges from 0 to n. It entails a special property that each row sums to zero:

aTL(1)1 = 0 (2.3)

for any vector a, where 1 denotes the vector of all 1’s. It will be clear later that (2.3)

is key to the proof of the theorem. For now we note that if λ = L(1)Ta, then

aTK(1)a = λTKλ = var
{∑

j

λjZ(xj)
}

with
∑
j

λj = 0. (2.4)

Strictly speaking, L(1)TL(1) is not a preconditioner, since L(1) has more columns
than rows, even though the transformed matrix K(1) has a desirable condition prop-
erty. A real preconditioner can be obtained by augmenting L(1). To this end, we
define, in addition to (2.2),

Y
(1)
0 = Z(x0), (2.5)

and let K̃(1) denote the covariance matrix of all the Y
(1)
j ’s, including Y

(1)
0 . Then we

have

K̃(1) = L̃(1)KL̃(1)T ,

where L̃(1) is obtained by adding to L(1) the 0th row, with 0th entry equal to 1 and

other entries 0. Clearly, L̃(1) is nonsingular. Thus, L̃(1)T L̃(1) preconditions the matrix
K:

Corollary 2.2. Suppose Z is a stationary process on R with spectral density
f satisfying (2.1). Then there exists a constant C depending only on T and f that
bounds the condition number of K̃(1) for all n.

For a given situation, it may turn out that var(Y
(1)
0 ) is much different from the

variances of the normalized first differences, leading to a covariance matrix with large
condition number. In this case, and similarly for the augmentation used in Corollary
2.4, a convenient practical fix is to consider the correlation matrix of the transformed
observations rather than the covariance matrix (see §5).

We next consider the case where the spectral density f satisfies

f(ω)ω4 bounded away from 0 and ∞ as ω → ∞. (2.6)

Integrated Brownian motion, a process whose first derivative is Brownian motion,
has spectral density proportional to ω−4. Thus (2.6) says Z behaves somewhat like
integrated Brownian motion at high frequencies. In this case, the appropriate precon-
ditioner uses second order differences. Define

Y
(2)
j =

[Z(xj+1)− Z(xj)]/dj+1 − [Z(xj)− Z(xj−1)]/dj

2
√
dj+1 + dj

, j = 1, . . . , n− 1, (2.7)

and denote by K(2) the covariance matrix of the Y
(2)
j ’s, j = 1, . . . , n− 1, namely,

K(2)(j, l) = cov
{
Y

(2)
j , Y

(2)
l

}
.
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Then for Z integrated Brownian motion K(2) is a tridiagonal matrix with bounded
condition number (see §2.3). This result allows us to show the condition number of
K(2) is bounded by a finite value independent of n whenever f satisfies (2.6).

Theorem 2.3. Suppose Z is a stationary process on R with spectral density f
satisfying (2.6). Then there exists a constant C depending only on T and f that
bounds the condition number of K(2) for all n.

If we let L(2) be the tridiagonal matrix with nonzero entries

L(2)(j, j − 1) = 1/(2dj
√
dj + dj+1),

L(2)(j, j + 1) = 1/(2dj+1

√
dj + dj+1),

L(2)(j, j) = −L(2)(j, j − 1)− L(2)(j, j + 1),

for j = 1, . . . , n− 1, and let K(2) be the covariance matrix of the Y
(2)
j ’s, then K and

K(2) are related by

K(2) = L(2)KL(2)T .

Similar to (2.3), the matrix L(2) has a property that for any vector a,

aTL(2)x0 = 0,

aTL(2)x1 = 0,
(2.8)

where x0 = 1, the vector of all 1’s, and x1 has entries (x1)j = xj . In other words, if

we let λ = L(2)Ta, then

aTK(2)a = λTKλ = var

∑
j

λjZ(xj)

 , with
∑
j

λj = 0 and
∑
j

λjxj = 0.

To yield a preconditioner for K in the strict sense, in addition to (2.7), we define

Y
(2)
0 = Z(x0) + Z(xn), and Y (2)

n = [Z(xn)− Z(x0)]/(xn − x0).

Accordingly, we augment the matrix L(2) to L̃(2) with

L̃(2)(0, l) =


1, l = 0

1, l = n

0, otherwise,

L̃(2)(n, l) =


−1/(xn − x0), l = 0

1/(xn − x0), l = n

0, otherwise,

and use K̃(2) to denote the covariance matrix of the Y
(2)
j ’s, including Y

(2)
0 and Y

(2)
n .

Then, we obtain

K̃(2) = L̃(2)KL̃(2)T .

One can easily verify that L̃(2) is nonsingular. Thus, L̃(2)T L̃(2) becomes a precondi-
tioner for K:

Corollary 2.4. Suppose Z is a stationary process on R with spectral density
f satisfying (2.6). Then there exists a constant C depending only on T and f that
bounds the condition number of K̃(2) for all n.



DIFFERENCE FILTERS FOR COVARIANCE MATRICES 7

We expect that versions of the theorems and corollaries hold whenever, for some
positive integer τ , f(ω)ω2τ is bounded away from 0 and ∞ as ω → ∞. However,
the given proofs rely on detailed calculations on the covariance matrices and do not
easily extend to larger τ . Nevertheless, we find it interesting and somewhat surprising
that no restriction is needed on the spacing of the observation locations, especially
for τ = 2. These results perhaps give some hope that similar results for irregularly
spaced observations might hold in more than one dimension.

The rest of this section gives proofs of the above results. The proofs make sub-
stantial use of results concerning equivalence of Gaussian measures [14]. In contrast,
the results for the high dimension case (presented in §3) are proved without recourse
to equivalence of Gaussian measures.

2.1. Intrinsic random function and equivalence of Gaussian measures.
We first provide some preliminaries. For a random process Z (not necessarily station-
ary) on R and a nonnegative integer p, a random variable of the form

∑n
j=1 λjZ(xj)

for which
∑n

j=1 λjx
`
j = 0 for all nonnegative integers ` ≤ p is called an authorized

linear combination of order p, or ALC-p [7]. If, for every ALC-p
∑n

j=1 λjZ(xj), the

process Y (x) =
∑n

j=1 λjZ(x+ xj) is stationary, then Z is called an intrinsic random
function of order p, or IRF-p [7].

Similar to stationary processes, intrinsic random functions have spectral measures,
although they may not be integrable in a neighborhood of the origin. We still use g(ω)
to denote the spectral density with respect to the Lebesgue measure. Corresponding
to these spectral measures are what are known as generalized covariance functions.
Specifically, for any IRF-p, there exists a generalized covariance function G(x) such
that for any ALC-p

∑n
j=1 λjZ(xj),

var


n∑

j=1

λjZ(xj)

 =
n∑

j,l=1

λjλlG(xj − xl).

Although a generalized covariance function G cannot be written as the Fourier trans-
form of a positive finite measure, it is related to the spectral density g by

n∑
j,l=1

λjλlG(xj − xl) =

∫ +∞

−∞
g(ω)

∣∣∣∣∣
n∑

j=1

λj exp(iωxj)

∣∣∣∣∣
2

dω

for any ALC-p
∑n

j=1 λjZ(xj).
Brownian motion is an example of an IRF-0 and integrated Brownian motion an

example of an IRF-1. Defining gr(ω) = |ω|−r, Brownian motion has a spectral density
proportional to g2 with generalized covariance function −c|x| for some c > 0. Note
that if one sets Z(0) = 0, then cov{Z(x), Z(s)} = min{x, s} for x, s ≥ 0. Integrated
Brownian motion has a spectral density proportional to g4 with generalized covariance
function c|x|3 for some c > 0.

We will need to use some results from Stein [21] on equivalence of Gaussian
measures. Let LT be the vector space of random variables generated by Z(x) for
x ∈ [0, T ] and LT,p the subspace of LT containing all ALC-p’s in LT , so that LT ⊃
LT,0 ⊃ LT,1 ⊃ · · · . Let PT,p(f) and PT (f) be the Gaussian measure for LT,p and LT ,
respectively, when Z has mean 0 and spectral density f . For measures P and Q on
the same measurable space, write P ≡ Q to indicate that the measures are equivalent
(mutually absolutely continuous). Since LT ⊃ LT,p, for two spectral densities f and
g, PT (f) ≡ PT (g) implies that PT,p(f) ≡ PT,p(g) for all p ≥ 0.
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2.2. Proof of Theorem 2.1. Let K(h) denote the covariance matrix K as-
sociated to a spectral density h, and similarly for K(1)(h), K̃(1)(h), K(2)(h), and
K̃(2)(h). The main idea of the proof is to put upper and lower bounds on the bilin-
ear form aTK(1)(f)a for f satisfying (2.1) by constants times aTK(1)(g2)a. Then
since K(1)(g2) has a condition number 1 independent of n, it immediately follows that
K(1)(f) has a bounded condition number, also independent of n.

Let f0(ω) = (1 + ω2)−1 and

fR(ω) =

{
f(ω), |ω| ≤ R

f0(ω), |ω| > R

for some R. By (2.1), there exist R and 0 < C0 < C1 < ∞ such that C0fR(ω) ≤
f(ω) ≤ C1fR(ω) for all ω. Then by (1.1) and (2.4), for any real vector a,

C0 · aTK(1)(fR)a ≤ aTK(1)(f)a ≤ C1 · aTK(1)(fR)a. (2.9)

By the definition of f0, we have PT,0(f0) ≡ PT,0(g2) [21, Theorem 1]. Since
fR = f0 for |ω| > R, by Ibragimov and Rozanov [14, Theorem 17 of Chapter III], we
have PT (fR) ≡ PT (f0); thus PT,0(fR) ≡ PT,0(f0). Therefore, by the transitivity of
equivalence, we obtain that PT,0(fR) ≡ PT,0(g2). From basic properties of equivalent
Gaussian measures (see [14, (2.6) on page 76]), there exist constants 0 < C2 < C3 < ∞
such that for any ALC-0,

∑n
j=0 λjZ(xj) with 0 ≤ xj ≤ T for all j,

C2 varg2


n∑

j=0

λjZ(xj)

 ≤ varfR


n∑

j=0

λjZ(xj)

 ≤ C3 varg2


n∑

j=0

λjZ(xj)

 ,

where varf , for example, indicates that variances are computed under the spectral
density f . Then by (2.4) we obtain

C2 · aTK(1)(g2)a ≤ aTK(1)(fR)a ≤ C3 · aTK(1)(g2)a. (2.10)

Combining (2.9) and (2.10), we have

C0C2 · aTK(1)(g2)a ≤ aTK(1)(f)a ≤ C1C3 · aTK(1)(g2)a,

and thus the condition number of K(1)(f) is upper bounded by C1C3/(C0C2).

2.3. Proof of Theorem 2.3. Following a similar argument as in the preceding
proof, the bilinear form aTK(2)(f)a for f satisfying (2.6) can be upper and lower
bounded by constants times aTK(2)(g4)a. Then it suffices to prove that K(2)(g4) has
a bounded condition number, and thus the theorem holds.

To estimate the condition number of K(2)(g4), first note the fact that for any two
ALC-1’s

∑
j µjZ(xj) and

∑
j ηjZ(xj),∑

j,l

µjηl(xj − xl)
3 = 0. (2.11)
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Based on the generalized covariance function of g4, c|x|3, we have

(j, l)-entry of K(2)(g4) = cov
{
Y

(2)
j , Y

(2)
l

}
= cov


+1∑

j′=−1

L(2)(j, j + j′)Z(xj+j′),
+1∑

l′=−1

L(2)(l, l + l′)Z(xl+l′)


= c

+1∑
j′=−1

+1∑
l′=−1

L(2)(j, j + j′)L(2)(l, l + l′)|xj+j′ − xl+l′ |3.

Since for any j, Y
(2)
j is ALC-1, by using (2.11) one can calculate that

(j, l)-entry of K(2)(g4) =


c, l = j

−cdj+1/(2
√

dj+1 + dj
√
dj+2 + dj+1) l = j + 1

0, |l − j| > 1,

which means that K(2)(g4) is a tridiagonal matrix with a constant diagonal c.

To simplify notation, let C(j, l) denote the (j, l)-entry of K(2)(g4). We have

|C(j − 1, j)|+ |C(j, j + 1)| = cdj

2
√
dj + dj−1

√
dj+1 + dj

+
cdj+1

2
√

dj+1 + dj
√
dj+2 + dj+1

≤
c
√
dj

2
√
dj+1 + dj

+
c
√
dj+1

2
√
dj+1 + dj

≤ c√
2
.

For any vector a,

aTK(2)(g4)a =
n−1∑
j,l=1

ajalC(j, l) ≥ c
n−1∑
j=1

a2j − 2
n−2∑
j=1

|ajaj+1C(j, j + 1)|,

but

2
n−2∑
j=1

|ajaj+1C(j, j + 1)| ≤
n−2∑
j=1

(a2j + a2j+1)|C(j, j + 1)|

≤
n−1∑
j=1

a2j (|C(j − 1, j)|+ |C(j, j + 1)|)

≤ c√
2

n−1∑
j=1

a2j .

Therefore,

aTK(2)(g4)a ≥ c(1− 1/
√
2) ‖a‖2 . (2.12)

Similarly, we have aTK(2)(g4)a ≤ c(1 + 1/
√
2) ‖a‖2. Thus the condition number of

K(2)(g4) is at most (1 + 1/
√
2)/(1− 1/

√
2) = 3 + 2

√
2.
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2.4. Proof of Corollaries 2.2 and 2.4. The proof of Corollary 2.2 is similar
to but simpler than the proof of Corollary 2.4 and is omitted. The main idea of
proving Corollary 2.4 is to consider the following covariance function (3.836.5 in [11]
with n = 4 shows that Bφ is a valid covariance function)

Bφ(x) =


32
3 φ3 − 4φx2 + |x|3, |x| ≤ 2φ
1
3 (4φ− |x|)3, 2φ < |x| ≤ 4φ

0, |x| > 4φ

for φ > 0 and the covariance function E(x) = 3e−|x|(1 + |x|). The function Bφ has a
spectral density hφ(ω) proportional to sin(φω)4/(φω)4, and E has a spectral density
θ(ω) = 6{π(1+ω2)}−2. Using similar ideas as in the proof of Theorem 2.1, we define

θR(ω) =

{
f(ω), |ω| ≤ R

θ(ω), |ω| > R

for some R. Then by (2.6), there exist R and 0 < C0 < C1 < ∞ such that for any
real vector a,

C0 · aT K̃(2)(θR)a ≤ aT K̃(2)(f)a ≤ C1 · aT K̃(2)(θR)a. (2.13)

Furthermore, according to the results in [14, Theorem 17 of Chapter III], when T ≤ 2φ,
PT (hφ) ≡ PT (θ) ≡ PT (θR), which leads to

C2 · aT K̃(2)(hφ)a ≤ aT K̃(2)(θR)a ≤ C3 · aT K̃(2)(hφ)a (2.14)

for some 0 < C2 < C3 < ∞. Combining (2.13) and (2.14), it remains to prove that
K̃(2)(hφ) has a bounded condition number, since then so does K̃(2)(f).

When T ≤ 2φ, only the branch |x| ≤ 2φ of Bφ is used, and one can compute the

covariance matrix K̃(2)(hφ) according to the definition of Bφ entry by entry:

(0, 0)-entry =
128

3
φ3 − 8φD2 + 2D3

(0, j)-entry =

(
−4φ+

3

2
D

)√
dj+1 + dj for j = 1, . . . , n− 1

(0, n)-entry = 0

(j, 0)-entry = (0, j)-entry for j = 1, . . . , n− 1

(j, l)-entry = (j, l)-entry of K(2)(g4)/c for j, l = 1, . . . , n− 1

(j, n)-entry = (n, j)-entry for j = 1, . . . , n− 1

(n, 0)-entry = 0

(n, j)-entry =

√
dj+1 + dj

D

(
xj−1 + xj + xj+1 −

3

2
x0 −

3

2
xn

)
for j = 1, . . . , n− 1

(n, n)-entry = 8φ− 2D,

where D = xn − x0, and recall that c is the coefficient in the generalized covariance
function corresponding to g4. To simplify notation, let H(j, l) denote the (j, l)-entry
of K̃(2)(hφ). Then we have

aT K̃(2)(hφ)a = a20H(0, 0) + a2nH(n, n) + 2a0

n−1∑
j=1

ajH(0, j) + 2an

n−1∑
j=1

ajH(n, j)

+ ãTK(2)(g4)ã/c, (2.15)
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where ã is the vector a with a0 and an removed. For every α > 0, using |2xy| ≤ x2+y2

and the Cauchy-Schwartz inequality, we have∣∣∣∣∣∣2a0
n−1∑
j=1

ajH(0, j)

∣∣∣∣∣∣ ≤ α2a20 +
1

α2

n−1∑
j=1

a2j

n−1∑
j=1

H(0, j)2

≤ α2a20 +
1

2α2
D (8φ− 3D)

2
n−1∑
j=1

a2j . (2.16)

Similarly, for every β > 0, using
∣∣xj−1 + xj + xj+1 − 3

2x0 − 3
2xn

∣∣ ≤ 3D, we have∣∣∣∣∣∣2an
n−1∑
j=1

ajH(n, j)

∣∣∣∣∣∣ ≤ β2a2n +
1

β2

n−1∑
j=1

a2j

n−1∑
j=1

H(n, j)2

≤ β2a2n +
18D

β2

n−1∑
j=1

a2j . (2.17)

Furthermore, by 2.12,

ãTK(2)(g4)ã/c ≥ (1− 1/
√
2) ‖ã‖2 . (2.18)

Applying (2.16), (2.17) and (2.18) to (2.15), together with D ≤ T ≤ 2φ, we obtain

aT K̃(2)(hφ)a ≥
(
128

3
φ3 − 8φD2 + 2D3 − α2

)
a20 + (8φ− 2D − β2)a2n

+

(
1− 1√

2
− 1

2α2
D (8φ− 3D)

2 − 18D

β2

) n−1∑
j=1

a2j

≥
(
128

3
φ3 − 8φT 2 + 2T 3 − α2

)
a20 + (8φ− 2T − β2)a2n

+

(
1− 1√

2
− 1

2α2
T (8φ− 3T )

2 − 18T

β2

) n−1∑
j=1

a2j .

Setting φ = 14T , α2 = 116000T 3 and β2 = 100T yields

aT K̃(2)(hφ)a ≥ 2902

3
T 3a20 + 10Ta21 +

(
178359

232000
− 1√

2

) n−1∑
j=1

a2j .

Since 178359
232000 − 1√

2
≥ .06, the minimum eigenvalue of K̃(2)(hφ) is bounded away from

0 independent of n. Similarly, the maximum eigenvalue is bounded from above, and
thus K̃(2)(hφ) has a bounded condition number.

3. Filter for d-dimensional case. The results in §2 do not easily extend to
higher dimensions. One simple exception is when the observation locations are the
tensor product of d one-dimensional grids and when the covariance function k(x) is the
product of d covariance functions for each dimension (i.e., k(x) = k1(x1)k2(x2) . . . kd(xd)),
in which case the covariance matrix is the Kronecker product of d one-dimensional
covariance matrices, each of which can be preconditioned separately. However, such
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models are of questionable relevance in applications [20]. Here, we restrict the lo-
cations of observations to a regular grid. In this case, the second order difference
filter becomes the standard discrete Laplace operator. A benefit is that the Laplace
operator can be recursively applied many times, resulting in essentially a much higher
order difference filtering.

Since the observation locations are evenly spaced, we use δ = T/n to denote
the spacing, where n is the number of observations along each dimension. Thus,
the locations are {δj}, 0 ≤ j ≤ n. Here, j is a vector of integers, and n means
the vector of all n’s.3 Since the locations are on a grid, we use vector indices for
convenience. Thus, the covariance matrix K for the observations {Z(δj)} has entries
K(j, l) = k(δj − δl). We define the Laplace operator ∆ to be

∆Z(δj) =
d∑

p=1

Z(δj − δep)− 2Z(δj) + Z(δj + δep),

where ep denotes the unit vector along the pth coordinate. When the operator is
applied τ times, we denote

Y
[τ ]
j = ∆τZ(δj).

Note that this notation is in parallel to the ones in (2.2) and (2.7), with [τ ] meaning the
number of applications of the Laplace operator (instead of the order of the difference),

and the index j being a vector (instead of a scalar). In addition, we use K
[τ ]
d to denote

the covariance matrix of Y
[τ ]
j , τ ≤ j ≤ n− τ :

K
[τ ]
d (j, l) = cov

{
Y

[τ ]
j , Y

[τ ]
l

}
,

where the subscript d is used to emphasize the dimension of the grid. We have the
following result.

Theorem 3.1. Suppose Z is a stationary random field on Rd with spectral density
f satisfying

f(ω) � (1 + ‖ω‖)−α, (3.1)

where α = 4τ for some positive integer τ . Then there exists a constant C depending

only on T and f that bounds the condition number of K
[τ ]
d for all n.

Recall that for a(ω), b(ω) ≥ 0,∀ω the relationship a(ω) � b(ω) indicates that
there exist C1, C2 > 0 such that C1a(ω) ≤ b(ω) ≤ C2a(ω), ∀ω.

It is not hard to verify that K
[τ ]
d and K are related by K

[τ ]
d = L

[τ ]
d KL

[τ ]
d

T
, where

L
[τ ]
d = Ln−τ+1 · · ·Ln−1Ln and Ls is an (s− 1)d × (s+ 1)d matrix with entries

Ls(j, l) =


−2d, l = j

1, l = j ± ep, p = 1, . . . , d

0, otherwise,

3Sometimes, boldface letters denote a vector of same entries (such as n meaning a vector of all
n’s). Under context, this notation is self-explanatory and not to be confused with the notation of a
general vector. Other examples in this paper include 1 and τ .
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for 1 ≤ j ≤ s − 1. One may also want to have a nonsingular L̃
[τ ]
d such that the

condition number of L̃
[τ ]
d KL̃

[τ ]
d

T
is bounded. However, we cannot prove that such an

augmentation yields matrices with bounded condition number, although numerical
results in §5 suggest that such a result may be achievable. Stein [19] applied the
iterated Laplacian to gridded observations in d dimensions to improve approximations
to the likelihood based on the spatial periodogram and similarly made no effort to
recover the information lost by using a less than full rank transformation. It is worth
noting that processes with spectral densities of the form (3.1) observed on a grid bear
some resemblance to Markov random fields [18], which provide an alternative way
to model spatial data observed at discrete locations. Furthermore, recent work [15]
indicates that Markov random fields can be used to approximate Gaussian fields with
spectral densities of the form (3.1) even when observations are not on a grid, and thus
provide a different approach to approximating likelihoods than is presented here.

3.1. Proof of Theorem 3.1. First note that if one restricts to observations on
the grid δj for j ∈ Zd, the covariance function k can be written as an integral in
[−π, π]d:

k(δj) =

∫
Rd

f(ω) exp(iωT (δj)) dω =

∫
[−π,π]d

fδ(ω) exp(iωT j) dω,

where

fδ(ω) = δ−d
∑
l∈Zd

f(δ−1(ω + 2πl)). (3.2)

Denote by k[τ ] the covariance function such that k[τ ](δj − δl) = K
[τ ]
d (j, l). Then

according to the definition of the operator ∆, we have k[0] = k and the recurrence

k[τ+1](δj) =

d∑
p,q=1

k[τ ](δj + δ(ep + eq))− 2k[τ ](δj + δep) + k[τ ](δj + δ(ep − eq))

− 2k[τ ](δj + δeq) + 4k[τ ](δj)− 2k[τ ](δj − δeq)

+ k[τ ](δj + δ(−ep + eq))− 2k[τ ](δj − δep) + k[τ ](δj + δ(−ep − eq)).

If we let

k[τ ](δj) =

∫
[−π,π]d

f
[τ ]
δ (ω) exp(iωT j) dω,

then the above recurrence for k[τ ] translates to

f
[τ ]
δ (ω) =

[
d∑

p=1

4 sin2
(ωp

2

)]2τ
fδ(ω), (3.3)

and for any real vector a, we have

aTK
[τ ]
d a =

∑
τ≤j,l≤n−τ

ajalk
[τ ](δj−δl) =

∫
[−π,π]d

f
[τ ]
δ (ω)

∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω.
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Therefore, to prove that K
[τ ]
d has a bounded condition number, we need to bound the

expression for aTK
[τ ]
d a given in the above equality.

According to the assumption of f in (3.1), combining (3.2) and (3.3), we have

δd−αf
[τ ]
δ (ω) �

[
d∑

p=1

4 sin2
(ωp

2

)]2τ ∑
l∈Zd

(δ + ‖ω + 2πl‖)−α =: hδ(ω).

Therefore, there exist 0 < C0 ≤ C1 < ∞ independent of δ and a, such that

C0Hδ(a) ≤ δd−αaTK
[τ ]
d a ≤ C1Hδ(a), (3.4)

where

Hδ(a) =

∫
[−π,π]d

hδ(ω)

∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω.

We proceed to bound the function Hδ(a).

For any δ 6= 0, hδ(ω) is continuous with hδ(0) = 0. When δ = 0 and α = 4τ ,
it can be shown that h0(ω) is also continuous, but h0(0) = 1. In other words, hδ

converges to h0 pointwise except at the origin. Since hδ > hδ′ when δ < δ′, we
have that hδ is upper bounded by h0 for all δ. Moreover, by the continuity of h0 in
ω ∈ [−π, π]d, h0 has a maximum C2. Therefore, hδ(ω) ≤ C2 for all δ and ω, and thus

Hδ(a) ≤ C2

∫
[−π,π]d

∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω = C2(2π)
d

∑
τ≤j≤n−τ

a2j . (3.5)

Now we need a lower bound for Hδ(a). First, note that when ω ∈ [−π, π]d,

hδ(ω) ≥ sinc2(1/2) ‖ω‖4τ (δ + ‖ω‖)−α.

Therefore, for any 0 < ε ≤ π/δ,

Hδ(a) ≥ sinc2(1/2)

∫
[−π,π]d

(
‖ω‖

δ + ‖ω‖

)α
∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω

≥ sinc2(1/2)

∫
[−π,π]d\{‖ω‖≤δε}

(
‖ω‖

δ + ‖ω‖

)α
∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω

≥ sinc2(1/2)

(
ε

1 + ε

)α ∫
[−π,π]d\{‖ω‖≤δε}

∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω. (3.6)

To obtain a lower bound on this last integral, note that

∫
[−π,π]d

∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω = (2π)d
∑

τ≤j≤n−τ

a2j
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and ∫
‖ω‖≤δε

∣∣∣∣∣ ∑
τ≤j≤n−τ

aj exp(iω
T j)

∣∣∣∣∣
2

dω ≤
∫
‖ω‖≤δε

( ∑
τ≤j≤n−τ

|aj |

)2

dω

≤
∫
‖ω‖≤δε

(n+ 1− 2τ)d
∑

τ≤j≤n−τ

a2j dω

= (n+ 1− 2τ)d(δε)dVd

∑
τ≤j≤n−τ

a2j

≤ (Tε)dVd

∑
τ≤j≤n−τ

a2j ,

where Vd is the volume of the d-dimensional unit ball, which is always less than 2d.
Applying these results to (3.6),

Hδ(a) ≥ sinc2(1/2)

(
ε

1 + ε

)α [
(2π)d − (Tε)dVd

] ∑
τ≤j≤n−τ

a2j .

Since this bound holds for any 0 < ε ≤ π/δ, we specifically let ε = 1/T . Then

Hδ(a) ≥ C3

∑
τ≤j≤n−τ

a2j (3.7)

with

C3 =
sinc2(1/2)[(2π)d − Vd]

(1 + T )α

which is independent of δ.
Combining (3.4), (3.5) and (3.7), we have

C0C3 ‖a‖2 ≤ δd−αaTK
[τ ]
d a ≤ C1C2(2π)

d ‖a‖2 ,

which means that the condition number of K
[τ ]
d is bounded by (2π)dC1C2/(C0C3).

4. Numerical experiments. A class of popularly used covariance functions
that are flexible in reflecting the local behavior of spatially varying data is the Matérn
covariance model [20, 17]:

k(x) =
1

2ν−1Γ(ν)

(√
2ν ‖x‖
`

)ν

Kν

(√
2ν ‖x‖
`

)
,

where Γ is the Gamma function and Kν is the modified Bessel function of the second
kind of order ν. The parameter ν controls the differentiability of the model, and ` is
a scale parameter. The corresponding spectral density

f(ω) ∝
(
2ν

`2
+ ‖ω‖2

)−(ν+d/2)

,

which is dimension dependent. It is clear that with some choices of ν, f satisfies the
requirements of the theorems in this paper. For example, when d = 1, the Matérn
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model with ν = 1/2 corresponds to Theorem 2.1 and Collorary 2.2, whereas ν = 3/2
corresponds to Theorem 2.3 and Collorary 2.4. Also, when d = 2, the Matérn model
with ν = 1 corresponds to Theorem 3.1 with α = 4, meaning that the Laplace operator
∆ is needed to apply once (τ = 1). Whittle [23] argued that the choice of ν = 1 is
particularly natural for processes in R2, in large part because the process is a solution
to a stochastic version of the Laplace equation driven by white noise.

Although the restrictions in our theoretical results are quite strong, there are
many other models besides Matérn models that satisfy the conditions of the various
results. For example, in one dimension, consider rational spectral densities in ω2,
i.e., f(ω) = P (ω2)/Q(ω2) for P and Q polynomials of degree p and q, respectively,
where P is nonnegative and Q is positive. If q = p + 1, then (2.1) is satisfied and if
q = p+ 2, then (2.6) is satisfied. The commonly used spherical covariance functions,

given by k(t) = c
{
1 − 3|t|

2θ + 1
2

(
|t|
θ

)3}
for |t| < 1 and 0 otherwise for positive c and

θ have spectral densities satisfying (2.1). Another class of covariance functions in
one dimension to which it is possible to show (2.1) applies are covariance functions

of the form k(t) = c
(
1 + |t|

θ

)−β

for positive c, θ and β, which [10] show are positive

definite. It is a bit harder to find examples of models used in practice that satisfy
(3.1) in more than one dimension, although some rational spectral densities do. In
particular, if f(ω) = P (ω)/Q(ω) for positive even polynomials P and Q with the
degree of Q minus the degree of P equaling a multiple of 4, then (3.1) is satisfied.
Some non-Matérn models of this form were considered in [22].

Figure 4.1 plots the curves of the condition numbers for both K and the filtered
versions of K, as the size m of the matrix varies for three Matérn models: the first
satisfying (2.1), the second (2.6) and the last (3.1) in d = 2. The plots were obtained
by fixing the domain T = 100 and the scale parameter ` = 7. For one-dimensional
cases, observation locations were randomly generated according to the uniform dis-
tribution on [0, T ]. The plots clearly show that the condition number of K grows
very fast with the size of the matrix. With an appropriate filter applied, on the other
hand, the condition number of the filtered covariance matrix stays more or less the
same, a phenomenon consistent with the theoretical results.

The good condition property of the filtered covariance matrix is exploited in the
block preconditioned conjugate gradient (block PCG) solver. The block version of
PCG is used instead of the single vector version because in some applications, such as
the one presented in §1, the linear system has multiple right-hand sides. We remark
that the convergence rate of block PCG depends not on the condition number, but on
a modified condition number of the linear system [16]. Let λj , sorted increasingly, be
the eigenvalues of the linear system. With s right-hand sides, the modified condition
number is λm/λs (recall that m is the size of the matrix). Nevertheless, a bounded
condition number indicates a bounded modified condition number, which is desirable
for block PCG. Figure 4.2 shows the results of an experiment where the observation
locations were on a 128 × 128 regular grid and s = 100 random right-hand sides

were used. Note that since K and K
[1]
d are BTTB (block Toeplitz with Toeplitz

blocks), they can be further preconditioned by using a BCCB (block circulant with
circulant blocks) preconditioner [6]. Comparing the convergence history for K, K

preconditioned with a BCCB preconditioner, K
[1]
d , and K

[1]
d preconditioned with a

BCCB preconditioner, we see that the last case clearly yields the fastest convergence.

Next, we demonstrate the usefulness of the bounded condition number results in
the maximum likelihood problem mentioned in §1. First, observations {y = Z(x)}
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Fig. 4.1. Condition numbers of K (both unfiltered and filtered) as the matrix size varies.

for a Gaussian random field in R2 are generated under the covariance function

k(x;θ) =
√
2 · rx;θK1

(√
2 · rx;θ

)
, rx;θ =

√
x2
1

θ21
+

x2
2

θ22
,

where θ∗ = [7, 10] and the observation locations x are on a two-dimensional regular
grid of spacing δ = 100/n. To proceed without filtering, one could solve the nonlinear
system (1.3). However, as already noted, the condition number of the covariance
matrix of y grows faster than linearly with m, so we did not pursue this possibility.
We instead solved a nonlinear system other than (1.3) to obtain the estimate θ̂N . We
applied the Laplace operator ∆ to the sample vector y once and obtained a vector
y[1]. Then we solved the nonlinear system

−(y[1])T (K
[1]
d )−1 ∂K

[1]
d

∂θ`
(K

[1]
d )−1(y[1]) +

1

N

N∑
j=1

uT
j

(
(K

[1]
d )−1 ∂K

[1]
d

∂θ`

)
uj = 0, (4.1)

where the uj ’s are as in (1.3). This approach is equivalent to estimating the parameter

θ from the sample vector y[1] with covariance K
[1]
d . The matrix K

[1]
d is guaranteed to

have a bounded condition number for all m according to Theorem 3.1.
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The simulation was performed on a Linux desktop with 16 cores with 2.66 GHz
frequency and 32 GB of memory. The nonlinear equation (4.1) was solved by using
the Matlab command fsolve, which by default used the trust-region dogleg algo-
rithm. Results are shown in Figure 4.3. As we would expect, as the number m of
observations increases, the estimates θ̂N tend to become closer to θ∗ which generated
the simulation data. Furthermore, despite the fact that N = 100 is fixed as m in-
creases, the confidence intervals for θ̂N become increasingly narrow as m increases,
which suggests that it may not be necessary to let N increase with m to insure that
the simulation error θ̂N − θ̂ is small compared to the statistical error θ̂− θ∗. Finally,
as expected, the running time of the simulation scales roughly O(m), which shows
promising practicality for running simulations on much larger grids than 1024×1024.
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Fig. 4.3. Simulation results of the maximum likelihood problem.

5. Further numerical exploration. This section describes additional numer-
ical experiments. First we consider trying to reduce the condition number of our
matrices by rescaling them to be correlation matrices. Specifically, for a covariance
matrix K, the corresponding correlation matrix is given by

C = diag(K)−1/2 ·K · diag(K)−1/2.
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Although C is not guaranteed to have smaller condition number than K, in practice
it often will. For observations on a regular grid and a spatially invariant filter, which
is the case in §3, all diagonal elements of K are equal, so there is no point in rescaling.
For irregular observations, rescaling does make a difference. For all of the settings
considered in §2, the ratio of the biggest to the smallest diagonal elements of all of the
covariance matrices considered is bounded. It follows that all of the theoretical results
in that section on bounded condition numbers apply to the corresponding correlation
matrices.
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Fig. 5.1. Condition numbers of covariance matrices and correlation matrices.

Figure 4.1(b) shows that the filtered covariance matrices K̃(2) have much larger
condition numbers than does K(2). This result is perhaps caused by the full rank
transformation L̃(2) that makes the (0, 0) and (n, n) entry of K̃(2) significantly different
from the rest of the diagonal. For the same setting, Figure 5.1(a) shows that diagonal
rescaling yields much improved results—the correlation matrix C̃(2) has a condition
number much smaller than that of K̃(2) and close to that of K(2).

Theorems 2.1 and 2.3 indicate the possibility of reducing the condition number
of the covariance matrix for spectral densities with a tail similar to |ω|−p for even
p by applying an appropriate difference filter. A natural question is whether the
difference filter can also be applied to spectral densities whose tails are similar to |ω|
to some negative odd power. Figures 5.1(b) and 5.1(c) show the filtering results for
|ω|−3 and |ω|−5, respectively. In both plots, neither the first nor the second order
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difference filter resulted in a bounded condition number, but the condition number
of the filtered matrix is greatly reduced. This encouraging result indicates that the
filtering operation may be useful for a wide range of densities (e.g., all Matérn models)
that behave like |ω|−p at high frequencies, whether or not p is an even integer.

For processes in d > 1 dimension, our result (Theorem 3.1) requires a transfor-

mation L
[τ ]
d that reduces the dimension of the covariance matrix by O(nd−1). One

may want to have a full rank transformation or some transformation that reduces the
dimension of the matrix by at most O(1). We tested one such transformation here

for a R2 example, which reduced the dimension by four. The transformation L̃
[1]
d is

defined as follows. When j is not on the boundary, namely, 1 ≤ j ≤ n− 1,

L̃
[1]
d (j, l) =


−4, l = j

2, l = j + (±ep), p = 1, 2

−1, l = j +
[±1
±1

]
0, otherwise.

When j is on the boundary but not at the corner, the definition of L̃
[1]
d (j, l) is exactly

the same as above, but only for legitimate l, that is, components of l cannot be smaller
than 0 or larger than n. The corner locations are ignored. The condition numbers of

the filtered covariance matrix K̃
[1]
d = L̃

[1]
d KL̃

[1]
d

T
and those of the corresponding corre-

lation matrix C̃
[1]
d are plotted in Figure 5.1(d), for the same covariance function used

in Figure 4.1(c). Indeed, the diagonal entries of K̃
[1]
d corresponding to the boundary

locations are not too different from those not on the boundary; therefore, it is not

surprising that the condition numbers for K̃
[1]
d and C̃

[1]
d look similar. It is plausible

that the condition number of K̃
[1]
d is bounded independent of the size of the grid.

6. Conclusions. We have shown that for stationary processes with certain spec-
tral densities, a first/second order difference filter can precondition the covariance
matrix of irregularly spaced observations in one dimension, and the discrete Laplace
operator (possibly applied more than once) can precondition the covariance matrix
of regularly spaced observations in high dimension. Even when the observations are
located within a fixed domain, the resulting filtered covariance matrix has a bounded
condition number independent of the number of observations. This result is particu-
larly useful for large scale simulations that require the solves of the covariance matrix
using an iterative method. It remains to investigate whether the results for high
dimension can be generalized for observation locations that are irregularly spaced.
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